126. Hans v. Dietrich und Friedrich Cramer: Über Einschlußverbindungen, VII. Mitteil.*): Zur Struktur der Jodketten in Kanal-Einschlußverbindungen

[Aus dem Chemischen Institut der Universität Heidelberg] (Eingegangen am 29. Januar 1954)

Die Struktur der hexagonalen α -Dextrin-Jod-Einschlußverbindung wird auf röntgenographischem Wege untersucht. Die Fourier-Analyse der eindimensionalen Schichtlinien ergibt das Vorliegen von linearen Jodketten, in denen die Jodatome einen Abstand von 3.06 Å haben. Die Kettenlänge der Jodketten beträgt etwa 15 Atome.

Zur Struktur der Jodketten in der Kanal-Einschlußverbindung α-Dextrin-Jod

Nach den bisherigen Untersuchungen an dieser Einschlußverbindung^{1,2}) stand fest, daß das Jod in geraden Ketten in das pseudohexagonale α -Dextrin-Wirtsgitter eingebaut ist^{**}). Für die Identitätsperiode innerhalb einer solchen Jodkette ergab sich dabei $m \times 3.06$ Å, wobei für m der Wert I als wahrscheinlich angenommen wurde. Unter Zugrundelegung des sich für m = 1 ergebenden Modells, das in Abbild. 1e dargestellt ist, wurden auch noch Berechnungen der Lichtabsorption ausgeführt³) mit dem interessanten Ergebnis, daß die Lichtabsorption von der Länge der Jodketten abhängig ist und daß das Absorptionsmaximum der blauen Jodaddukte nach dieser Rechnung auf eine durchschnittliche Länge der Jodketten von ungefähr 14 Jodatomen schließen läßt.

Im folgenden wird nun versucht, auf röntgenographischem Wcg näheren Aufschluß über die Struktur und Länge der Jodketten zu erhalten. An Hand von Berechnungen der Röntgenstreuung werden zunächst die einfachsten in Frage kommenden Modelle der Jodketten (s. Abbild. 1a-e) diskutiert. Dasjenige Modell, das die beste Übereinstimmung mit dem Experiment liefert, wird dann den Berechnungen zugrunde gelegt, die zur Abschätzung der Kettenlänge notwendig sind.

Wenn man annimmt, daß sich die Jodmoleküle beim Aufbau der Einschlußverbindung nur lose aneinanderlagern, so daß sich Bindungsradius und van-der-Waals-Radius nur wenig ändern, so erfordert dies eine Identitätsperiode in Kettenrichtung von mindestens $2 \times 3.06 = 6.12$ Å. In diesem letzteren Fall erhält man dann eine ebene Zickzack-Kette von J₂-Molekülen wie sie in Abbild. Ia dargestellt ist. Um der intermolekularen Wechselwirkung etwas Rechnung zu tragen, wurde für dieses Modell a eine kleine Vergrößerung des intramolekularen Abstands von 2.66 Å (im normalen J₂-Molekül)

^{*)} VI. Mitteil.: F. Cramer, Chem. Ber. 86, 1582 [1954].

^{**)} Es existiert außerdem eine Modifikation in rhombischen Nadeln, die von W. J. James u. D. French, Iowa Acad. Sci. 59, 197 [1952], untersucht wurde. Sie enthält, auch nach unseren Feststellungen, keine Jodketten.

¹) F. Cramer, Chem. Ber. 84, 855 [1951]; Naturwissenschaften 38, 188 [1951].

²) C. D. West, J. chem. Physics 15, 689 [1947]; 17, 219 [1949]; 19, 1432 [1951].

³) F. Cramer u. W. Herbst, Naturwissenschaften 39, 256 [1952].

auf 2.70 Å und eine geringe Verkleinerung des intermolekularen Abstands von 4.30 Å auf 4.25 Å angenommen. Der "Bindungswinkel" zwischen intra- und intermolekularer Bindung beträgt dann 117.7^o.

Falls man eine lineare Anordnung der Jodatome annimmt, so müssen sich

die Abstände – verglichen mit dem normalen J_2 -Molekül – stark ändern, da sich dann die Gesamtlänge des Moleküls von 6.96 Å auf 6.12 Å verkleinert. Bei einer solchen linearen Struktur sind nun zwei Grenzfälle möglich, die in Abbild. 1b und 1e wiedergegeben sind. In Modell b ist der intramolekulare Abstand ganz der gleiche wie im J_2 -Molekül, also 2.66 Å, während in Modell e intra- und intermolekulare Abstände vollständig angeglichen sind, so daß eine Atomkette mit gleichbleibendem Atomabstand von 3.06 Å entsteht.

Zwischen Modell b und Modell e werden noch die zwei in Abbild. 1c und d

Abbild. 1. Mögliche Modelle der Jodketten

wiedergegebenen Zwischenstufen diskutiert, bei denen also intra- und intermolekulare Abstände nur teilweise angeglichen sind. Bei Modell c wurde als intramolekularer Abstand 2.77 Å, bei Modell d 2.86 Å angenommen.

Aus Röntgenaufnahmen, die mit stehendem Kristall⁴) und mit (gefiltertem) Primärstrahl senkrecht zur Basis der pseudohexagonalen Drillinge gemacht wurden, gehen sofort die vorkommenden Achsenrichtungen der Jodketten

Abbild. 2. Zur Definition der verwendeten Winkel A Achsenrichtung der betrachteten Jodketten, B gebeugter Strahl, P Primärstrahl

relativ zu den Kristallflächen hervor⁴^a), so daß der Winkel ξ (Definition s. Abbild. 2) bei derartigen Aufnahmen immer beliebig eingestellt werden kann.

⁴⁾ W. Borchert, Heidelberger Beiträge zur Mineralogie u. Petrographie 3, 124 [1952].

 $^{^{4}a}$) Es treten in jedem Einzelkristall eines solchen Drillings drei um 60° gegeneinander geneigte Achsenrichtungen der Jodketten auf, wie man leicht erkennt, wenn man Aufnahmen von einem solchen Einzelkristall macht. Es ergeben sich dann die gleichen Diagramme wie sie ein ganzer Drillingskristall gibt, mit dem einzigen Unterschied, daß die Interferenzlinien einfach sind, während sie in Diagrammen eines ganzen Drillingskristalls doppelt erscheinen, da sich ja infolge der pseudohexagonalen Form dieser Kristalle die Achsenrichtungen der Jodketten nicht genau decken (s. Abbild. 3).

der	
Werte	
berechneten	äten
Ι	a i t
Abbild.	n Intens
der	lene
ę	20.0
és C	وت
elle	-
od	5
M	÷
die	۔ م
Ľ.	loi.
يت. 	240
ы. Е	Þ
Winkel	han na
n	194
ene	10
ied	n + 0
chi	,_ _
егя	
i v	5
bei	1080
der	folt
3u	÷ +
Ilu	ĥ.
ste	;
ens	
u u	
88.1	
Ζu	
l.	
el	
Taf	

				njac	RULIA	LKTOFE	nun u	Tault	121636	บกบอ	a vere	TALCH	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	a di	1 anun r	10111 110	10100101	_	
رو به	u	Ħ	σ			s					°S.					Iber			l _{exp.}
Grad		Grad	Grad	đ	۹		70	e	c3	م		q	ə	đ	Ą	0	ą	ی	
90	1	14.56	•	46.64	29.69	14.68	10.13	I	2175	881	215.3	102.5	1	265000	107350	26240	12482	1	
			20	50.78	23.95	11.84	8.17	l	2578	573	140	68.7	. <u> </u>	33410	7 425	·1815	865	1	ì
			30	51.20	20.57	10.17	7.02	l	2620	423	103.4	49.2	Ì	14595	2356	576	283.2	I	ł
	-		40	42.63	18.13	8.94	6.17	1	1817	328.3	79.85	38.0	1	5851	1057.3	253.9	122.5	1	
	1	30.19	•	46.38	-62.63	-84.45	-86.48	-88.3	2149	3920	7130	7475	797	55170	104670	190360	199550	208 200	sehr stark
			50	48.09	-63.92	-72.69	-74.44	-76.0	2310	2907	5283	5540	5776	21625	27210	48500	51850	54070	mittel
_			30	45.49	-47.60	-64.18	-65.72	-67.1	2068	2265	4117	4318	4502	10305	11280	20500	21500	22420	schwach
			40	41.69	-42.67	-67.52	-58.92	-60.14	1737	1820	3308	3469	3617	5523	5 790	10523	11030	11503	sehr schwach
	+3	48.95	•	51.16	-59.91	-32.64	-22.86	I	2616	3586	1065	522.3	1	23960	32840	9757	4784		1
			20	34.62	-54.92	29.93	-20.96	I	1198	3015	895	439	1	6986	16225	4816	2362	1	ł
_			30	28.61	-50.68	-27.61	-19.33	ι	818	2568	762	373.6	1	3295	10320	3071	1506	1	ł
	-		40	30.64	-47.06	-25.64	-17.95	1	939	2213	657	322	1	2900	6838	2030	98 5	I	i
85	-	14.79	•		29.66	14.66	10.12	1		879.5	214.9	102.3	1		103450	25280	12040	1	
	7	-14.45	•		29.71	14.69	10.14	I		882.5	215.8	102.7	1		109800	26675	12703	1	1
<u> </u>	67	31.16	•		-62.16	-83.78	-85.78	-87.6		3862	7019	7353	7675		96400	175100	183 450	191500	stark
	57	-29.55	•		-63.00	-84.92	-86.94			3968	7211	7555	7890		109500	198900	208400	217700	schr stark
~	en	52.32	0		58.33	-31.77	-22.25	1		3402	1009	495	1		26790	7947	3898	1	
	ñ	-46.86	•		-61.02	-33.24	-23.27	I		3721	1105	541.5	ł		37630	11175	5477	1	1
·	4	-71.70	•		22.24	52.91	58.57	63.8		494	2799	3428	4070		1952	11060	13547	16080	sehr schwach / diffus
	*) 2	$2\hat{v} = 71.$	-20		-45.28	-61.03	-62.48	-63.8		2048	3722	3901	4070		8096	14710	15415	16080	sehr sohwach
1.08	-	15.15	0		29.55	14.62	10.08	1		874	213.5	101.7	1		99120	24210	11526	1	
	7	-14.46	0		29.74	14.69	10.14	1		885	215.5	102.7	i		108500	26670	12700	Ι	1
	8	32.55	0		-61.45	-82.82	-84.80	-86.60		3775	6860	7190	7500		85600	155500	163 000	170050	stark
	%	-29.21	•		-63.20	-85.21	-87.24	-89.1		4000	7258	7605	7950		114730	208100	218000	228000	sehr stark
	۳	58.08	0		-55.75	-30.35	-21.26	1		3112	920.5	451.5	1		19325	5716	2722.5	ł	1
	ñ	56,50	0		-61.20	-33.32	-23.34	[•	3750	1110	544.5	ł		35480	11430	5606	1	1
•	1	-66.28	•		23.13	54.97	60.84	66.28		536	3020	3700	4400		2489	14860	17180	20430	schwach
<u> </u>	*)2	2 v = 60	6.28		-47.01	-63.40	-64.91	-66.28	<u> </u>	2210	4017	4212	4400		10260	18660	19560	20430	schwach

	57580 104700 109700 114400 stark	114400 204900 217600 227000 sehr stark	44360 13152 6453 -	3105 16550 21510 25550 schwach	900 4549 2368	23350 24500 25550 schwach	4926 7110	0 10722	26210 27500**)	201000 209800 : sehr stark	6321	21635 27230 schwach	3503	26120 27230 schwach
- 103400 25280 11 920	57580 104700 109700 114400	114400 204900 217600 227000	44360 13152 6453	3105 16550 21510 25550	900 4549 2368	23350 24500 25550	4926 7110 -	0 10722	26210 27500	201000 209800	6321	21 635 27 230	3 503	26120 27230
- 103400 25280 11920	57580 104700 109700	114400 204900 217600	44360 13152 6453	3105 16550 21510	900 4549 2368	23350 24500	4926 7110	0 10722	26210	201000	6321	21635	3 503	26120
- 103400 25280	57580 104700	114400 204900	44360 13152	3105 16550	900 4549	23350	4926	0						
- 103400	57580	114400	44360	3105	906		-	2250	25150	191700	12893	17653	6820	24900
 					6	12865	61040	92030	13855	105500	43 470	3311	14890	13 720
	6920	7920	1	4705	 	4705	 1	1	4800	7820	1	4785		4785
102.3	6634	7590	564	3961	802.6	4512	97.2	101.3	4605	7490	561.5	3802	874	4590
214.9	6333	7248	1150	3048	1541	4300	204.2	212.7	4390	7145	1145	3102	1671	4376
879	3483	3988	3877	572	3355	2370	835	870	2418	3932	3860	582	3650	2412
!	-83.2	89.0		68.6	 1	-68.6		1	69.3	-88.4		69.2	 	69.2
10.12	-81.47	-87.15	-23.76	62.96	28.34	67.18	9.86	10.07	67.86	-86.57	-23.70	61.68	29.57	87.76
14.66	-79.60	-85.16	-33.92	55.22	39.19	-65.61	14.29	14.59	66.29	-84.56	-33.84	55.73	40.89	-66.19
29.66	59.04	-63.17	-62.28	23.91	57.92	48.69	28.90	29.50	49.19	-62.72	-62.13	24.12	60.42	-49.11
0	0	0	0	0	0	1.58	0	0	0	•	0	0	0	10.37
-14.8(37.65	-29.21	-44.34			2 3 = 6	18.66	-15.58	60.19	-30.13	-44.72	-60.37	-80.15	20 = 6
ī	2	ہ ا	Ĩ	1	ſ	*) 2	-	1	**) 2	, ⁶⁷	ĩ	1	ĥ	*) 2
	-1 -14.80 0 29.66 14.65 10.12 -10.12	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

n Punkt entartet sein. Dieser wird jedoch infolge Absorption innerhalb des Kristalls nicht beobachtet, einen Streifen minimaler Schwärzung um die Schnittlinie des Films mit der Basis der pseudohexagonalen siden anderen Achsenrichtungen werden durch dissen Streifen unterbrochen. = gesamter Ablenkungswinkel des gestreuten Strahls. Kristallen hervör, die alle einen Streifen minimaler Schwärzung u der Jodketten mit den beiden anderen Achsenrichtungen werden zum Punkt entartet sein. ter diesen Aufnahmebedingungen geformten Kristallen hervor, die 3 2. Ordnung der Jodketten mit den 2.1 $\sigma = 0^{\circ}$, so daß sie sich gut zum Vergleich der Intensitäten eignen. n = 2 müßte unter o n von verschieden gefo e Interferenzlinien 2. 0 # # geht aus Aufnahmen die mit Auch Interferenz zeigen. Prismen í## Stelle o Dies

Es wurde nun eine Serie von Aufnahmen mit verschiedenen Winkeln ξ ausgeführt, um Interferenzen möglichst vieler Ordnungen unter variierten Bedingungen untersuchen zu können. Eine dieser Aufnahmen (mit $\xi = 70^{\circ}$) zeigt Abbild. 3 (814).

Die aus den Aufnahmen entnommenen Intensitäten I_{exp} sind in der letzten Spalte der Tafel 1 angeführt und den nach einem vereinfachten Verfahren⁵) für die Modelle a bis e berechneten Strukturfaktoren S, deren Quadraten S² sowie den daraus berechneten relativen Intensitäten I_{ber} gegenübergestellt. Die Ordnungszahlen n sind auf die Periode $2 \times 3.06 = 6.12$ Å bezogen.

Für Modell a wurde dabei angenommen, daß die Jodketten innerhalb der Kanäle des Wirtsgitters statistisch um ihre Längsachse gedreht vorkommen. Es könnte aber natürlich auch so sein, daß sich die Ebenen der Jodketten in eine bestimmte, vom Wirtsgitter vorgegebene Ebene einstellen. Da über die Lage einer solchen etwaigen Ebene von vornherein nichts ausgesagt werden kann, wurden die analogen Berechnungen wie oben für

Chemische Berichte Jahrg. 87

⁵) H. v. Dietrich, zur Veröffentlichung in Z. Elektrochem. Ber. dtsch. Bunsenges. physik. Chem. **58** [1954] vorgesehen.

Tafel 2. Zusammenstellung der bei verschiedenen Winkeln γ (= Drehung der Kettenebene) für Modell a der Abbild. 1 berechneten Werte für Strukturfaktoren und Intensitäten. Vergleich mit den gefundenen Intensitäten s. Tafel 1. $\xi = 90^{\circ}$.

Y	n	σ	s	S^2	Iber	Y	S	S	Iber
0	+1	0	46.80	2189	266 700	10	48.43	2344	285 600
		20	48.65	2365	30650		44.00	1936	25100
		30	63.65	4050	22550		59.98	3596	20030
		40	-60.22	3625	11673		60.16	3617	11647
	+ 2	0	-49.02	2402	64 130		-42.90	1840	49140
		20	-75.95	5765	53970		-75.70	5726	53600
		30	-58.56	3425	17055		-63.32	4009	19960
		40	35.62	1268	4033		-45.13	2035	6473
	+ 3	ō	-75.45	5690	52110		75.36	5675	51 960
		20	-44.70	1997	11646		-56.14	3150	18363
		30	-21.44	459	1850			1372	5 5 2 8
		40	- 0.55	0.31	0.95		-19.69	387.4	1 197
20	± 1	0	50.00	2500	304600	30	51.47	2647	322 550
20		20	-36.87	1359	17610		-27.09	734	9515
		30	-53.42	2854	15895		-43.20	1866	10393
		40		3230	10400		-48.27	2328	7 4 97
			20.00	1945	25,000			020 5	95.080
	7 4	20	-30.03	1345 5495	50920			4805	23 080
		20	-66.60	4499	99070		-66 60	4000	22070
		40	-54.87	3009	9570		59.85	3580	11385
			70.09	5000			66.00		40.200
	+ 3		- 12.22	5215	47700		-60.00	4444	97810
		20		9341	9436		60 58	3668	14780
		40	-37.96	1441	4453		-52.23	2726	8424
			50.75	0700	000 700	r o	E2 00	9009	352550
40	+1	0	52.75	2780	338700	50	050	2902	303 000
		20		210.5	4/20	i	-10.84	117.4	854
		40	-28.75	1107	3564		-12 52	156.8	504 9
		40			3304				
	+2	0		628	16770		-20.15	406	10 840
	Į	20	-62.00	3841 2015	10050		51.75	2073	20 040
		40		3820	19050		-48 16	2003	7375
			50.00	011		<u> </u>	10.10		
	+3	0	-59.63	3004	32550		-32.17	2721	24920
		20	68,60	4705	27430	i i		4030	23020
		40		3505	10830			3270	10105
		1 10	55.20	0000	10000		51.20	0071	
60	+1	0	54.79	3000	365500	70	55.43 20.00	3071	374200
		20	14.97	224	2903		30.62	925 5	12 143
		10	9.42	197.6	404	ł	23.43	1143	3680
						—	19.19	171 0	4500
	+2		-16.11	209.2	14160		-13.12	401	4000
		20	-36.91	1369	9140			959 3	1755
		40	-30.79	947.4	3013		- 8 91	79.35	252.3
			45.20	0051	19700	-		1190	14 500
	-+-3	0	-45.50	2051	17599			1059	14320
		20	-51.90	9699	10850		-39.07	1526	6159
	1	40	-46.98	2207	6820			978	3022
				2110	100000			210	201 660
80	+1	; U ; 00	00.80 AE 10	3118	380000	80	57 54	3132	40,800
		20	40.10	2034	19900		50.54	2207 2550	19770
		40	50.00	2174	8979	i i	59 88	3594	11347
			11.07						2000
	+2	0	-11.27	127	5391			113.2	2022 199
į	ļ	30	- 5.75	0.00	100		18.40	339.8	1 692 4
		40	13.48	181 6	577.8		32.82	1076.5	3424
		1 - •				i 1			

	_								-
Υ	n	σ	S	S*	Iber	γ	s	S^2	Iber
Ť	+ 3	0	36.33	1320	12090		35.11	1233	11296
1		20		1110	6472		-23.54	554	3 2 3 0
ļ		30	-24.85	617	2486		-11.41	130.2	524.5
		40	-13.65	186.2	575.2		2.86	8.19	25.32
100	+1	0	55.85	3119	380 000	110	55.43	3071	374200
		20	67.22	4518	58560		73.90	5458	70730
1		30	66.81	4460	24840		68.80	4730	26340
		40	59.57	3547	11422		53.27	2836	9132
	+ 2	0		127	3 3 9 1		-13.12	171.9	4 590
[20	17.04	290.1	2715		27.46	754	7057
1		30	33.63	1130	5628		45.09	2032 -	10123
		40	46.82	2191	6970		55.22	3048	9695
	+ 3	0	-36.33	1320	12090		-39.83	1586	14526
		20	15.93	253.6	1 479			121.9	710.7
		30	- 0.27	0.07	0.29		7.64	58.4	235.3
		40	16.16	261.2	807.2		25.57	653.5	2019
120	+ 1	0	54.79	3000	36550	130	53.88	2902	353550
		20	77.80	6050	78420	1	79.66	6345	82250
		30	66.84	4470	24890		62.80	3942	21950
	. <u> </u>	40	43.53	1894	6098		33.47	1120	3606
	+ 2	0	-16,11	259.2	6921		-20.15	406	10840
		20	35.30	1246	11665		40.60	1648	15427
		30	52.96	2804	13965		57.70	3326	16560
		40	59.06	3486	11087		60.10	3610	11480
	+ 3	0	45.30	2051	19790		-52.17	2721	24920
		20	- 9.31	86.7	505.4	1	-10.81	116.7	680.4
		30	12.11	146.5	590.5		12.84	164.7	663.9
		40	31.00	961	2970		32.79	1075	3322
140	+1	0	52.75	2780	338700	150	51.47	2647	322550
		20	80.10	6418	83200		79.92	6387	82790
		30	58.32	3400	18940		54.93	3016	16800
		40	25.26	637.7	2053		20.39	416	1339.7
	+ 2	0	-25.06	628	16770		30.66	939.5	25080
		20	43.55	1895	17740		44.11	1945	18205
		03	60.18	3620	18030	1	60.90	3707	18455
		40	60.03	3602	11 455		59.91	3587	11 405
	+3	0	-59.63	3554	32550		-66.66	4444	40700
		20	-15.38	236.5	1379.3		-22.86	522	3043
		30	10.12	102.4	412.6		3.74	14.01	56.45
		40	31.22	974.5	3011	<u> </u>	26.01	676	2089
160	+1	0	50.00	2500	304600	170	48.43	2344	285600
		20	79.70	6350	82300		79.71	6350	82300
	1	80	53.41	2851	15877		54.22	2938	10300
		40	19.35	374.3	1 205.5		22.38	500.5	1012
	+ 2	0	-36.69	1725	35920	1	-42.90	1840	49140
		20	42.46	1802	16870		38,38	1472	13780
		30	60.15	3616	18010		57.60	3316	16515
		40	60.08	3607	11470	-	59.39	3525	11210
	+ 3	0	-72.22	5215	47760		-75.36	5675	51960
		20	-32.49	1055	6 151		-43.40	1882	10974
		30	5.94	35.31	142.3	1	-18.50	342.3	1379.5
	<u> </u>	40	16.96	287	888.4	<u> </u>	3.86	14.92	46.11
180	+1	0	46.80	2189	266 700	190	45.13	2036	248 100
		20	79.72	6350	82300	1	80.10	6418	83 200
	İ	30	57.78	3337	18585	1	61.35	3761	20940
		40	29.05	844	2717	1	38.42	1476	4753

Fortsetzung von Tafel 2

Υ	n	σ	S	S^2	Iber	Υ	S	S^2	Iber
	+2	0	-49.02	2402	64 130	i i	54.80	3003	80 200
		20	31.86	1014	9490	!	22.77	511.8	4 7 9 0
		30	52 72	2778	13840		44.79	2005	9987
		40	58.40	3409	10840		53.55	2866	9112
		-	_75.45	5890	59110			5993	47.920
		90	-59.10	9995	17055		_62.00	2061	93110
		20		1000	4905		46.49	9155	20110
		10	-32.00	1066	4290	1	40.45	2155	8660
		40	-12.43	154.3	476.9		-30.13	907.7	2805
200	+1	0	43.53	1893.	230600	210	41 99	1761	214 550
		20	79.60	6335	82100		77.75	6040	78 290
	:	30	65.73	4320	24055		68.52	4694	26140
		40	48.69	2369	7629		57.09	3258	10 490
	+ 2	0	60.10	3610	96400		64.70	4182	111680
		20	11.30	127.6	1 194.5	1 1	- 2.15	4.62	43.27
		30	33.14	1098	5470		17.94	321.8	1602.5
		40	43.81	1919	6105		28.30	800.5	2545
	+ 3	0	-66.44	4412	40410	!	-58.47	3418	31 300
		20	-68.38	4672	27240		-69.22	4790	27930
		30	57.50	3305	13320		-63.49	4030	16240
	İ	40	-46.13	2126	6571		56.75	3219	9946
220	+1	0	40.60	1647	200 200	230	39.37	1550	188 900
		20	73.66	5423	70280	200	66.89	4473	57980
		30	67.94	4613	25.690		62.50	3905	21 745
		· 10	60.46	3659	11760	1 1	56 13	3149	10140
				4700	105 500		71 88	E 199	197.050
	+ 2		-68.57	4700	125 500	1	/1.66	5155	137050
	1	20	16.80	282.0	2639.0		-31.57	995.5	93.10
		30	0.23	0.055	0.27		-19.41	3/6.3	1874.5
		40	7.88	62.1	197.45	. i	14.80	218.8	090
	+ 3	0	-49.50	2449	22430	1 i	-40.60	1648	15097
	Ì	20	65.21	4250	24780		56.22	3160	18426
		30	63.01	3968	15990		-55.98	3133	12625
	ļ	40		3518	10870		52.95	2802	8658
240	+ 1	0	38.40	1474	179600	250	37.68	1419	172900
		20	57.10	3260	42250		44.52	1982	25680
		30	51.42	2642	14710		35.35	1249	6958
		40	43.10	1856	5977		22.86	522.3	1681.5
	+ 2	0	74.00	5475	146200		75.62	5718	152650
	ļ	20	-45.35	2056	19247		-57.02	3251	30430
		30	-37.59	1412	9476		52.28	2732	13607
		40	35.88	1287	4 093		51.51	2652	8433
	+ 3	0	-32.76	1073	9829	·	-26.66	710.5	6 507
		20	-45.60	2078	12 120	1	-33.05	1092	6365
	I	30	-43.68	1907	7685			815	3 284
		40	-39.06	1526	4716		-20.95	438.7	1355.5
260	+ 1	0	37.91	1384	168600	270	37.07	1874	167.400
200	(T •	20	90.07	1004	11497	210	14 99	906.9	2490
		20	15.04	000	1907 9		14.50	200.0	119.4
		10	0.80	250.9	9.08		4.51	554 5	1785.5
	<u> </u>					-		504.0	1700.0
	+2	0	-76.56	5860	156450	1	76.89	5910	157770
	ł	20	-65.87	4340	40620			5150	48200
	1	30	-62.13	3858	19210		-66.66	4442	22120
		40		3514		-		3494	11 110
	+ 3	0	-22.85	521.8	4779	1	-21.53	463	4 2 4 0
	1	20	-20.95	438.8	2558	1	10.52	110.55	644.7
		30	-13.00	169.	681 1		0.95	0.90	3.63

Fortsetzung von Tafel 2

Υ			s	S ²	Iber	Y	s	S^2	Iber
28						_		2846	172 900 2058 8 506 9 165
			-76.56	5860	156 450		75.62	5718	152650
			74.93	5610	52 500		-75.98	5765	53 960
		i	-66.53	4424	22030		63.19	3991	19877
			52.81	2788	8 865	_	-43 18	1863	5927
	+ 3	0		521.8	4779	i			6507
		20	- 2.61	6.79			2.38		32 94
		30	12.08	145.9			19.76		1572.2
_!		40	26,89	722.7			35.43		3879
304	+1	0 20			179 600	310	39.37 		188900 17865 18890
		40			10998				11760
	+2		-74.00	5475					137050
		20	-75.70	5726					52450
		30		3406					14395
		40	-33.13	1097.5					1971
	+3	0	-32.76	1073	9829	-			15097
		20	4.12	16.97	0.020				39.59
		30	24.00	575.7	2320				2455
		40	40.20	1616					5381
39	-	<u> </u>	10.40	1	·	1 1			914550
0.0			10.00	1960					30850
				3935					23510
				3560					11070
	+ 2								111680
		20		5505				1	51300
		30							12140
		40	-19.67	387					1085.5
	+3	- <u>_</u>		1		- !			31300
		20							558.8
		30							1031.5
ł		40							3966
34(]		<u> </u>			230.600	- i	· · · · ·		248100
					33740			2596	33 650
		ļ			24070			4270	23777
ł		.	58.36	t	10960	ļļ	-59.12		11250
i	+ 2		-60.10	3610	96400	-	54.80	3003	80 200
	• -	20	-74.50	5550	51950		-75.30	5663	53 000
ļ		30	-50.56	2556	12730	1 1	-53.89	2902	14 453
1		40	20.67	427	1 357 5		-26.75	715.3	2274
	+ 3	0	-66.44	4412	40410		-72.36	5233	47920
		20	-20.05	402	2344			1032	6016
		30	6.45	41.65	167.8		- 6.35		162.25
			27.63	763	2358		15.22]	715.9

Fortsetzung von Tafel 2

36 verschiedene Lagen der Jodketten durchgeführt. Zwei aufeinanderfolgende Lagen unterscheiden sich dabei nur durch eine Drehung der Ketten-Ebene um die Kettenlängsachse um 10°. Die Ergebnisse sind in Tafel 2 zusammengefaßt. Der Winkel γ bezieht sich auf die erwähnte Drehung der Ketten-Ebene.

Man sieht, daß Modelle zweifellos die beste Übereinstimmung mit den experimentellen Daten liefert, da alle anderen hier diskutierten Modelle noch andere Interferenzlinien ergeben müßten. Andererseits ist aber auch ersichtlich, daß bei der successiven Angleichung der inter- und intramolekularen Atomabstände in der Reihe der Modelle b bis e die Interferenzen ungerader Ordnung schnell schwächer werden. Modell d wäre noch mit Sicherheit an

pild, 3. Röntgeninterferenz-Aufnahme von α -Dextrin-Jod ($\xi = 70^{\circ}$)

der Interferenz 1. Ordnung erkennbar; bei noch weiterer Angleichung der Atomabstände an den Mittelwert 3.06 Å würde aber auch diese Interferenzlinie 1. Ordnung so schwach, daß sie auf den Diagrammen nicht mehr beobachtbar wäre, was Übereinstimmung mit dem Experiment ergäbe. Man kann also auf Grund der vorliegenden Untersuchung Zwischenstufen zwischen Modell d und Modell e nicht ausschließen. In diesen zwischen d und e liegenden Modellen würde also der Atomabstand abwechselnd 3.06 + x Å und 3.06 - x Å betragen, wobei aber x < 0.2 Å ist, also schon in die Größenordnung der Amplituden der thermischen Atomschwingungen fällt. Da kompliziertere Modelle als die hier diskutierten (etwa spiralförmige) für die Jodketten wohl kaum in Frage kommen, kann gesagt werden, daß ein Molekülverband innerhalb der Ketten höchstens ganz schwach angedeutet sein kann.

Die großen Atomabstände innerhalb der Jodketten deuten auf eine Resonanz zwischen Bindungs- und Nichtbindungszuständen⁶). Man könnte diese Mesomerie etwa folgendermaßen formulieren:

6) G. A. Gilbert u. J. V. R. Marriot, Trans. Faradaday Soc. 44, 84 [1948].

Bei großer Kettenlänge würden die beiden Typen von Grenzformeln praktisch äquivalent. In diesem Fall wäre also ein ganz gleichbleibender Atomabstand innerhalb der Kette zu erwarten, was dem Modell in Abbild. 1e entspricht. Bei kleinerer Kettenlänge, wo die Äquivalenz der Systeme i und k nicht mehr gewährleistet ist, müßte der Bindungscharakter innerhalb der Kette alternieren, was natürlich auch ein Alternieren der entsprechenden Atomabstände zur Folge hätte. Da die Resonanzenergie der Ketten pro Mol J. (die bei Äquivalenz von i und k ihr Maximum erreicht) dann aber mit sinkender Kettenlänge sehr schnell abnehmen muß, läßt sich vorhersehen, daß eine Mindestlänge der Jodketten existieren muß, unterhalb welcher die Kettenmodifikation des Jods instabil ist. Es erscheint aber nach diesen Betrachtungen ebenso verständlich, daß die Wirtsubstanz, die ja für die Ausbildung der Kettenmodifikation des Jods notwendig ist, durch Polarisations- und andere Wechselwirkungseffekte⁷) einen entscheidenden Einfluß auf das Gewicht der erwähnten Grenzformeln haben muß, so daß wenigstens die Mindestlänge der Ketten von der Wirtssubstanz abhängen dürfte.

Eine Abschätzung der (evtl. durchschnittlichen) Länge der Jodketten auf Grund der Röntgenaufnahmen läßt sich relativ leicht durchführen, wenn man nach dem gleichen vereinfachten Fourier-Synthese-Verfahren, das oben benutzt wurde, den Intensitätsverlauf beim senkrechten Schnitt durch eine der kontinuierlichen Interferenzlinien für verschiedene Kettenlängen berechnet und mit der entsprechenden Aufnahme vergleicht. Das Verfahren wurde auf die Stelle $\sigma = 0^{\circ}$ der Linie mit n = 2 im Diagramm mit $\xi = 90^{\circ}$ angewendet. Da die beobachteten Linien ziemlich scharf sind, wurden die betreffenden Kurven nur bis zu $\pm 1^{\circ}$ Abweichung vom exakten Schichtlinienwinkel genau bestimmt, im weiteren Bereich bis zu $\pm 5^{\circ}$ Abweichung dagegen nur in Intervallen von 1° berechnet, so daß dort der genaue Verlauf nicht ermittelt wurde (schwächer gezeichnete gerade Verbindungslinien in Abbild. 4). Allen Rechnungen wurde das ja sehr wahrscheinlich zutreffende Kettenmodell in Abbild. 1e zugrunde gelegt. Die Rechenergebnisse zeigt Abbild. 4.

Um die experimentellen Daten zu erhalten, wurden Aufnahmen mit sehr verschiedenen Belichtungszeiten gemacht. Abbild. 5 zeigt zwei Photometerkurven von derartigen Aufnahmen. Eine quantitative Intensitätsauswertung war uns aus apparativen Gründen nicht möglich, weshalb keine Halbwertsbreite der Schichtlinien ermittelt werden konnte. Man sieht aber schon aus Abbild. 5, daß die Gesamtschichtlinienbreite ziemlich unabhängig von der Belichtungsdauer der Aufnahme ist; andererseits ist aus Abbild. 4 zu ersehen, daß die Nebenmaxima links und rechts vom Hauptmaximum der Intensität einer Schichtlinie wohl kaum einen merklichen Effekt hervorrufen dürften. Man wird also jedenfalls keinen zu großen Fehler begehen, wenn man die aus den Aufnahmen entnehmbare Gesamtschichtlinienbreite mit der Breite des Hauptmaximums der theoretischen Kurven vergleicht. Eine Korrektur für Kristalldicke, Divergenz der Strahlung, Absorption usw. wurde näherungsweise durchgeführt, indem einfach von der jeweils gemessenen Ge-

⁷⁾ R. S. Stein u. R. E. Rundle, J. chem. Physics 16, 195 [1948].

Abbild. 4. Strukturfaktor und Intensität beim Schnitt durch eine kontinuierliche Schichtlinsc ($\xi = 90^{\circ}, \sigma = 0^{\circ}, n = 2$) für verschiedene Kettenlängen

samtschichtlinienbreite die Breite der (immer weit schärferen) benachbarten Laue-Reflexe ähnlicher Intensität abgezogen wurde. Auf diese Art ergaben sich für die korrigierte Schichtlinienbreite $\Delta \mu$ experimentelle Werte von etwa $3-4^{\circ}$, im Mittel etwa 3.5° .

Aus den Kurven der Abbild. 4 wurden nun die Breiten der Hauptmaxima von I_{her} für die verschiedenen Jodatomketten-Längen abgegriffen und in

Abbild. 5. Photometer-Kurven beim Schnitt durch je eine kontinuierliche Schichtlinie (B) und je einen Laue-Reflex (A) Kurve I: Aufnahme mit 13 Stdn. Belichtungszeit; Kurve II: Aufnahme mit 22 Stdn. Belichtungszeit

Abbild. 6 gegen die entsprechenden Jodatomzahlen aufgetragen. Um dabei noch die unteren, flacheren Teile der Hauptmaxima auszuschalten, wurden die Breiten jeweils bei $I_{ber} = 10000$ gemessen.

Für den experimentellen Wert $\Delta \mu =$ 3.5° liefert die Abbild. 6 eine Kettenlänge von ca. 15 Jodatomen. Man kommt also jedenfalls zu ganz ähnlichen Werten wie sie von Cramer und Herbst³) bereits aus der Lage des Absorptionsmaximums der blauen Jodaddukte berechnet wurden.

Abbild. 6. Abhängigkeit der berechneten Schichtlinienbreite $\Delta \mu$ von der Länge der Jodketten ($\xi = 90^{\circ}, \sigma = 0^{\circ}, n = 2$)